Introduction to Statistics
MAT 1360 Winter 2013

Statistics is…“the most important science in the world, for upon it depends the practical application of every
other science and of every art. The one science essential to all political and social administration, all education, all
organization based on experience, for it only gives the results of our experience.”
– Florence Nightingale

Instructor: Dr. Brian Gill Office: OMH 239 E-mail: bgill@spu.edu
Phone: 281-2954 Web page: http://myhome.spu.edu/bgill
Learning Assistant: Ellie Bau E-mail: baug@spu.edu

University and Departmental Mission: Seattle Pacific University seeks to be a premier Christian university fully
committed to engaging the culture and changing the world by graduating people of competence and character, becoming
people of wisdom, and modeling grace-filled community.
The mathematics department at Seattle Pacific University seeks to provide excellent instruction to enable our students to
be competent in the mathematics required for their chosen fields, and to share our expertise with the community through
service and leadership. Hence, common goals for students in mathematics courses include 1) becoming competent in the
topics covered in the course, 2) demonstrating skills and attitudes which contribute to professional, ethical behavior, 3)
the ability to communicate mathematically, in both written and verbal form, and 4) learning to appreciate the beauty and
utility of mathematics.

Course Goals: The aim of this course is to develop critical reasoning skills necessary to understand our quantitative
world. The focus of the course is the process of learning how to ask appropriate questions, how to collect data
effectively, how to summarize, interpret, and draw conclusions from that data, and how to understand the limitations of
statistical inference. Students should gain an understanding of fundamental statistical concepts, including randomization,
estimation, confidence, testing, and significance.

Learning Objectives: By the end of the course, you should be able to:

- describe and critique various methods of data collection and experimental design;
- construct, analyze, and interpret verbal, numerical, and graphical summaries of data;
- perform basic probability computations and articulate the role that probability plays in statistical inference;
- apply the central limit theorem and explain the role that it plays in statistics;
- construct, analyze, and interpret confidence intervals for proportions and means;
- conduct and interpret tests of hypotheses in a wide variety of contexts;
- use linear regression and the correlation coefficient to analyze the relationship between two variables and to
 predict the value of the dependent variable;
- approach and solve practical problems and analyze genuine data using statistical reasoning;
- use a computer and Minitab to analyze data and to solve statistical problems; and
- communicate the results of statistical analyses through graphical and verbal means.

Course Prerequisites: Mathematics Placement Level B. You are expected to be able to perform mathematically at the
level of basic high school algebra. Here are some examples of important prerequisite knowledge:

1. You should be able to calculate 3% of 700.
2. You should be able to decide which is greater: 6/81 or 0.5%.
3. 78/91 is equal to what percent?
4. How do we describe all numbers greater than or equal to 1/7? You should be able to use both interval and
 inequality notation.
5. Solve for x if $y = 42$ in the equation $y = -\frac{5}{4}x + 2$, and find the slope and y-intercept of this line.
6. Solve for n in the equation: $1.5 = \sqrt{\frac{(0.98)(0.02)}{n}}$ and for σ or μ in the equation: $\frac{x - \mu}{\sigma} = -0.46$.
7. Basic familiarity with descriptive statistics, including numerical summaries such as means and medians
 and graphical summaries such as histograms, bar graphs, and boxplots.
8. Please see me immediately if you have questions about these concepts! These kinds of skills are critical
 for success in this course!
Course Overview

What is Statistics? Statistics is the science of collecting and analyzing data for the purpose of drawing conclusions and making decisions. There are three main topics of statistics: data collection, descriptive statistics, and inferential statistics. One of the primary goals of statistics is inferential statistics, which can be defined as drawing conclusions and/or making decisions concerning a large population based only on data about a sample from the population. When trying to draw conclusions about an entire population based only on a sample, it is essential that the sample be representative of the population. Poorly collected data can lead to misleading (if not completely meaningless) conclusions. As a result, proper data collection is a fundamental concern. Once data has been collected, it needs to be organized, summarized, and effectively presented in both graphical and numerical forms in order to facilitate understanding of the data. These methods are known collectively as descriptive statistics. We will study all three areas of statistics in some detail in this course.

Understanding results from investigation and discovery. This course will not be a traditional mathematics course. We will use a “workshop” approach throughout the quarter. As opposed to passively taking notes while I lecture, you will spend the vast majority of class time actively engaged with the material, working through activities carefully designed to lead you to discover fundamental statistical ideas for yourself. You will be asked to work collaboratively with a partner on most of these activities, and some will require the use of a computer. My role during class time will be to milling about the classroom, answering your questions and prodding you toward a better understanding of the material. I will also lead class discussions and present explanations when appropriate.

Statistics involves the analysis of genuine data. Statistics is very applicable in everyday life and in most fields of academic endeavor. Throughout this course, you will analyze genuine data from a wide variety of applications. Some of these data sets involve information that you will collect about yourselves and your peers; others will come from sources such as almanacs, journals, magazines, newspapers, and books. The contexts for these data will span a wide variety of subject matter; most should be of interest to a general audience.

Statistics is not number-crunching. Contrary to its popular perception, statistics involves much more than numerical computations. This is not a traditional mathematics course — the main emphasis of the course will be on understanding statistical concepts and on interpreting and communicating the results of statistical analyses, not on mathematical computations. In other words, you will be expected to learn to construct and analyze numerical arguments. In contrast to most math courses, we will be using phrases such as "there is strong evidence that ..." and "the data suggest that ..." rather than "the exact answer is ..." and "it is therefore proven that ...". To alleviate the computational burden, we will often use the computer program Minitab or other software to perform calculations and produce visual displays. Technology can also help present ideas in a visual, interactive environment, allowing you to more easily understand the concepts and their properties.

Statistics is a way of thinking. Learning a new way of thinking requires serious effort on the part of the student. Statistics cannot be learned simply by listening to lectures or reading a book; you must actively engage with the material. This course will ask you to think critically and to defend your arguments. You will be asked to make guesses, collect data, draw conclusions, write summaries, discuss findings, explore alternatives, investigate scenarios, etc. You must have an open and active mind in order to complete these tasks; in other words, you must accept responsibility for your own learning. To be successful in this course, for every hour spent in the classroom, a typical student should expect to need to spend approximately two hours outside of class reading, studying, and working on homework. As your instructor, I view my role as providing you with contexts and opportunities which facilitate the learning process and lead you on the path toward understanding statistics. Please call on me to help you with this learning in whatever ways I can.

Textbook and Course Materials:

Textbook: *Workshop Statistics: Discovery with Data*, 4th Edition, by Allan Rossman and Beth Chance. This text is a workbook designed for you to answer questions and do your work directly in the book. You are expected to bring the book to class every day since we will use it very extensively during class time. You must purchase a new copy of the book with no writing in it, and you must write your answers to the questions in the book itself. Failure to follow these instructions will result in a grade of zero for class participation (which is worth 10% of your overall course grade).

Statistical Software: We will make very substantial use of the statistical software package Minitab (version 16) to perform calculations, create graphics for analyzing data, and conduct computer simulations of random phenomena. Minitab is available for your use in all public computer labs on campus, including labs in OMH and the library. Use of Minitab will be required for most homework assignments throughout the quarter and will also be required on exams. If you wish to use Minitab on your own computer, you can purchase a license at http://www.onthehub.com/minitab/. You can get a temporary license for Minitab 16 which will expire at the end of 2013 for $29.99, or you can buy a permanent license for $99.99. In addition to Minitab, we will make use of a variety of Java applets and other software tools freely available over the internet.
Grading and Course Expectations

Attendance and Class Participation: Unless you have an acceptable excuse and make special arrangements with me before class begins, you are expected to attend class every day, arrive on time, and remain until class is over. During class, you are expected to actively participate in all activities and to work only on statistics – texting, doing work for other classes, surfing the internet, checking e-mail, or chatting about your weekend social activities will be considered equivalent to being absent for the day’s class. Attendance and class participation will count as a part of your course grade. Use of your cell phone during class will also be considered equivalent to being absent for the day’s class. If you will be absent from class, you must contact me before class begins (in person or by phone or by e-mail) to make arrangements for the day. Failure to do so will reduce your attendance/class participation grade and will result in a grade of zero for any exam or quiz given in class that day.

NOTE: Things such as oversleeping or lack of preparation are NOT acceptable excuses. Acceptable excuses include illness, a death in your family, and official SPU athletics trips. If requested, you are responsible for providing me with documentation of your excuse.

Homework: The only way to truly learn statistics and mathematics is to work as many exercises as possible. You cannot learn to do statistics by watching someone else do it or listening to someone else talk about it – you must actually do it yourself and practice, practice, practice. Furthermore, the material each class period builds on what came before, so it is essential to keep up with the work every day. As a result, there will be homework assignments given virtually every class period which will typically be collected at the next class meeting. All assignments will be posted on the course website; however, you are also responsible for all announcements made in class (whether or not they are posted on the web). Most assignments require the use of Minitab, so you will need to plan to have access to a computer with Minitab when doing your homework.

General homework policies:
- Homework must be turned in by 11:00 (the start of the class period) on the day it is due; late homework will not be accepted for any reason (and homework is considered late at 11:01). If you have an excused absence and make arrangements with me before class starts, the homework score will be dropped.
- You are strongly encouraged to come to my office to ask me questions about the homework.
- You are also encouraged to work with other students on the homework, but unless otherwise indicated for a particular assignment, you must individually write up and turn in your own solutions.
- You are required to list on your paper all other individuals that you worked with or that gave you assistance with the homework – failure to do so will be considered cheating (turning in someone else’s work as your own).
- Homework must be neat and easily readable or you will receive NO credit.
- You must show all of your work – a correct answer with no justification will also be worth NO credit.
- When explanations are called for on the homework, you should respond in complete sentences with proper grammar, spelling, and punctuation.
- Not all homework exercises will be graded, but solutions for exercises which are not graded will be posted on the course webpage.
- Your lowest homework score will be dropped from your final grade.

Exams: There will be two midterm exams and a cumulative final exam. All exams will be open book. Use of Minitab will be required as a part of the exams. The midterm exams are tentatively scheduled for Wednesday, January 30 and Monday, February 25, but these dates are subject to change.

Course Grades: Homework assignments will be worth 25% of your course grade. Each midterm exam will be worth 20% of the course grade and the final exam will count for 25%. Attendance and class participation will determine the remaining 10% of the grade. Course grades will be based on the following scale:

- 93-100% A
- 90-92% A-
- 87-89% B+
- 83-86% B
- 80-82% B-
- 77-79% C+
- 73-76% C
- 70-72% C-
- 67-69% D+
- 60-66% D
- Below 60% E

A grade of I (incomplete) is only given for on-academic reasons such as a severe illness that prevents you from completing the course. You must have a passing grade on the material that you have completed in order to receive an incomplete.

Academic Integrity: The current edition of the SPU Undergraduate Catalog describes the University’s commitment to academic integrity, which is breached by academic dishonesty of various kinds. Examples of academic dishonesty include copying another’s work on an exam, bringing concealed answers to an exam, turning in another person’s work as your own, committing plagiarism, assisting another student in cheating, or lying to the instructor. The minimum penalty for academic dishonesty in any form will be a zero for the assignment or exam in question; in severe cases, academic dishonesty will result in a failing grade for the course. In addition, all students have an obligation to make efforts to prevent other students from cheating and to report incidents of cheating or plagiarism.
Office Hours: My regular office hours will be immediately before class, 8:30-9:20 MWF in OMH 209. You are strongly encouraged to drop by my office to ask questions, discuss problems, and just to get to know me better. If you are unable to meet with me during my scheduled office hours, I am available at other times by appointment. I also maintain an “open door” policy at my office – any time that my door is open you are welcome to drop in to talk to me, even if it is not during my scheduled office hours. I will typically be around for much of the afternoon on MWF, but I will not generally be on campus on Tuesday and Thursday.

Tutoring: Free tutoring for this course is available through the Mathematics Study Center, which is located between OMH 139 and OMH 143. Additional details and a schedule will be provided during the first week of class.

Additional Notes:

E-mail: All SPU students have an SPU e-mail address. I will occasionally make use of these SPU e-mail addresses to send information to all members of the class, so you should check your e-mail regularly. If you do not use your SPU e-mail account, there is a utility available through Banner to set up your SPU e-mail account to forward messages to some other e-mail address. I strongly recommend doing this so that you do not miss any important messages.

Please note that while it can be a great tool for quick communication, e-mail is rarely a good substitute for face-to-face conversations and is very poorly suited for answering mathematical questions. When you come to my office to ask me questions, I engage you in a discussion about the problem, ask questions about what ideas you have for approaching the problem, explore various possible approaches (and what goes wrong with some of them), etc. In the process, I can usually find out precisely where your difficulties lie and help you to learn how to get past them. Such a conversation is impossible by e-mail. Furthermore, typing and e-mailing mathematical symbols is very time consuming, and the resulting equations in the e-mail often come out garbled (or even completely missing).

Students with Disabilities: In accordance with Section 504 of the Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990, students with specific disabilities that qualify for academic accommodations need to contact Disabled Student Services in the Center for Learning. Disabled Student Services in turn will send a Disability Verification Letter to me indicating what accommodations have been approved. Once you have done this, you should also make an appointment to meet with me as early as possible in the quarter to discuss the details of how we will implement the accommodations in this course.

Inclement Weather: SPU maintains an Emergency Closure Hotline (206-281-2800). In the event of inclement weather or an emergency that might close the university, please call the Hotline for the most up-to-date closure information or check the SPU website. Both will be updated before 6:00 a.m.

Emergency Procedure: Please note the emergency procedures posted in the classroom and note all emergency exits. In case of an emergency (fire, earthquake, hazardous material spillage, bomb threat, etc.), the class will evacuate the building and gather in the Alumni Center parking lot outside Otto Miller Hall. Please try to stay together so that we can check that everyone has made it safely out of the building.

“... statistical techniques are tools of thought, and not substitutes for thought.”
– Abraham Kaplan

“It is easy to lie with statistics, but it is easier to lie without them.”
– Frederick Mosteller

“The conception of chance enters into the very first steps of scientific activity in virtue of the fact that no observation is absolutely correct. I think chance is a more fundamental conception than causality; for whether in a concrete case, a cause-effect relation holds or not can only be judged by applying the laws of chance to the observation.”
– Max Born

“While nothing is more uncertain than the duration of a single life, nothing is more certain than the average duration of a thousand lives.”
– Elizur Wright

“In God we trust, all others bring data.”
– William Edwards Deming

(Attribution to Deming is ironically not supported by data)
Tentative Class Schedule

The table below provides a tentative listing of topics that we will cover from the *Workshop Statistics* textbook. A more detailed schedule of homework assignments, due dates, and material covered will be posted on the course webpage. The exact dates on which we cover material will almost certainly vary somewhat from the list below. Also, topics may be added or removed at any time.

<table>
<thead>
<tr>
<th>Date</th>
<th>Material to be Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>Topic 1: Data & Variables</td>
</tr>
<tr>
<td>1/7</td>
<td>Topic 2: Data & Distributions</td>
</tr>
<tr>
<td>1/9</td>
<td>Topic 3: Drawing Conclusions from Studies</td>
</tr>
<tr>
<td>1/11</td>
<td>Topic 4: Random Sampling</td>
</tr>
<tr>
<td>1/14</td>
<td>Topic 5: Designing Experiments</td>
</tr>
<tr>
<td>1/16</td>
<td>Topic 6: Two-Way Tables</td>
</tr>
<tr>
<td>1/18</td>
<td>Topic 7: Displaying & Describing Distributions</td>
</tr>
<tr>
<td></td>
<td>Topic 8: Measures of Center</td>
</tr>
<tr>
<td>1/21</td>
<td>No Class: MLK</td>
</tr>
<tr>
<td>1/23</td>
<td>Topic 9: Measures of Spread</td>
</tr>
<tr>
<td>1/25</td>
<td>Topic 10: More Summary Measures & Graphs</td>
</tr>
<tr>
<td>1/28</td>
<td>Topic 11: Probability</td>
</tr>
<tr>
<td>1/30</td>
<td>Midterm Exam #1</td>
</tr>
<tr>
<td>2/1</td>
<td>Topic 12: Normal Distributions</td>
</tr>
<tr>
<td>2/4</td>
<td>Topic 30: Probability Rules</td>
</tr>
<tr>
<td>2/6</td>
<td>Topic 13: Sampling Distributions for Proportions</td>
</tr>
<tr>
<td>2/8</td>
<td>Topic 14: Sampling Distributions for Means</td>
</tr>
<tr>
<td>2/11</td>
<td>Topic 15: Central Limit Theorem and Statistical Inference</td>
</tr>
<tr>
<td>2/13</td>
<td>Topic 16: Confidence Intervals for Proportions</td>
</tr>
<tr>
<td>2/15</td>
<td>Topic 17: Tests of Significance for Proportions</td>
</tr>
<tr>
<td>2/18</td>
<td>No class – Presidents’ Day</td>
</tr>
<tr>
<td>2/20</td>
<td>Topic 18: More Inference Considerations</td>
</tr>
<tr>
<td>2/22</td>
<td>Topic 19: Confidence Intervals for Means</td>
</tr>
<tr>
<td>2/25</td>
<td>Midterm Exam #2</td>
</tr>
<tr>
<td>2/27</td>
<td>Topic 20: Tests of Significance for Means</td>
</tr>
<tr>
<td>3/1</td>
<td>Topic 21: Comparing Two Proportions</td>
</tr>
<tr>
<td>3/4</td>
<td>Topic 22: Comparing Two Means</td>
</tr>
<tr>
<td>3/6</td>
<td>Topic 26: Graphical Displays of Association</td>
</tr>
<tr>
<td></td>
<td>Topic 27: Correlation Coefficients</td>
</tr>
<tr>
<td>3/8</td>
<td>Topic 28: Least Squares Regression</td>
</tr>
<tr>
<td>3/11</td>
<td>Review/Wrap-up</td>
</tr>
<tr>
<td>3/13</td>
<td>Final Exam – 10:30 to 12:30</td>
</tr>
</tbody>
</table>

Modifications to the course requirements can be made at any time. It is *your* responsibility to know all course requirements as described here or announced in class.