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Abstract

Noninvasive gamma-knife radiosurgery treatment attacks brain tumors using
spherical radiation dosages (shots). We develop methods to design optimized
treatmentplansusing fourfixed-diameterdosages. Ouralgorithms strictly adhere
to the following rule: Shots cannot violate tumorboundaries or overlap eachother.

From a mathematical perspective, the problem becomes a matter of filling an
irregularly-shaped target volume with a conglomeration of spheres. We make
no assumptions about the size and shape of the tumor; by maintaining complete
generality, our algorithms are flexible and robust. The basic strategies of the
algorithms are deepest-sphere placement, steepest descent, and adaptation.

We design representative 3D models to test our algorithms. We find that
the most efficient packing strategy is an adaptive algorithm that uses steepest
descent, with an average coverage percentage of 40% over 100 test cases while not
threatening healthy tissue. One variation covered 56% of one test case but had a
large standard deviation across 100 test cases. It also produced results four times
as fast as the adaptive method.

Background

Brain Tumors
The average volume of a tumor operable by radiosurgery is about 15 cm3

[Lee et al. 2002]. We generate 3D tumor models of approximately this volume
with varying physical dimensions.

The Gamma Knife
The gamma knife unit consists of 201 individual cobalt-60 radiation sources

situated in ahelmet. The201beamsconverge at an isocenter creatinga spherical
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dose distribution (“shot”). Four sizes of spheres are possible: 4, 8, 14, and
18mm in diameter. A radiosurgery plan is used tomap out shots to destroy the
tumor without harming the patient. Following successful treatment, surviving
cancer cells lose their ability to grow. In fact, many partially destroyed tumors
shrink or even disappear in time [Kaye and Laws 1995].

The Problem
The plans should arrange radiation doses so that tumor destruction is max-

imized, healthy tissue is protected, and hot spots are avoided. Thus, the algo-
rithms are subject to the following constraints:

• Prohibit shots from penetrating outside the target area.

• Prohibit overlap of shots, preventing hotspots.

• Maximize the percentage covered in the tumor, or target volume.

• Use a maximum of 15 shots.

Assumptions
• The tumor is homogeneous; it is equally productive to treat any part of it.

• The tumor is modeled discretely using a three-dimensional image.

• No assumptions are made about the shape of the tumor.

• Tumor cells are either been radiated or not; there are no partial dosages.

Problem Approach
We have divide the problem into three different pieces:

• create a variety of 3-dimensional brain tumor models,

• develop and refine sphere-packing algorithms, and

• test and compare algorithms using tumor models
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Data Models
Our data consists of a 100 × 100 × 100 array that represent a 1000 cm3

space around the brain tumor. We refers to each element of the matrix as a
voxel (three-dimensional pixel). Each voxel represents 1 mm3 of brain tissue
[Wagner 2000]. We use 1s to indicate tumor and 0s to represent healthy tissue,
and we populate the arrays with tumor models as described below.

Sphere Tumor Model
Our firstmodel is based on the simple equation for a sphere, (x−x0)2+(y−

y0)2+(z−z0)2 = r2, where the center of the sphere is represented by (x0, y0, z0)
with radius r. We fill in the voxels representing the tumor by applying the
inequality (x− x0)2 + (y − y0)2 + (z − z0)2 ≤ r2 throughout the test volume.

Ellipsoid Tumor Model
The ellipsoid model uses the same principle as the spherical model. The

inequality
(x− x0)2

a2
+

(y − y0)2

b2
+

(z − z0)2

c2
≤ r2

represents the interior of an ellipsoid. The spherical and ellipsoid models are
a basis for the mutated sphere tumor model.

Mutated Spherical Tumor Model
Tumor shapes can be modeled by unions of ellipsoids [Asachenkov 1994].

Thus, our most accurate model is created by intersecting several ellipsoids at
random locations. We start with a small spherical tumor. Then we create
three discrete uniformly distributed random variables Ux, Uy , and Uz , where
(Ux,Uy ,Uz) represents a randomly chosen voxel within the sphere. This point
becomes the center of an ellipsoid that is added to the tumor. The a, b, and
c parameters that define the dimensions of the ellipsoid are defined by three
other random variables Ua, Ub, and Uc, uniform continuous random variables
over [5, 15].

Sphere-Packing Algorithms
In practice, tumors are usually represented as a 3D image obtained from

MRI (magnetic resonance imaging). We discretize the tumor and the removal
spheres for processing. We explore four different methods:

• first-deepest,
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• steepest descent,

• improved steepest descent, and

• adaptive.

Grassfire Algorithm
All of our sphere-packing methods employ the grassfire algorithm [Wag-

ner 2000]. The grassfire method progressively marks the layers of the tumor
from the outside in, analogous to a fire burning away an object one layer at a
time.

For each 1-valued voxel, all surrounding voxels are surveyed. If any are
0-valued (outside the tumor), the current voxel is set to a depth of 2, which
represents the boundary of the tumor. This process is repeated for every voxel
in the 3D test volume, with layer numbers progressively increasing until all of
the 1s in the array have been consumed. In other words, the grassfire method
calculates an approximatemeasure of depth for each voxel in the tumor. Doing
so gives an easy measure of the largest sphere that can be placed at any given
point without violating the tumor boundary. If the voxel is at depth 8 or 9, then
a 7-mm sphere should be used, and so on.

The basic operation of grassfire (shown in two dimensions) is shown in
Figure 1, which shows the effect of grassfire on a circle. For readability, the
boundary layer has been left at a value of 1 and the data arrays represent amuch
smaller area than the plots. Depth is indicated by shade; darker is deeper. The
arrows show progression through initial grassfiring to the removal of a small
circle from the center (just as spheres are removed from the tumor). Notice that
when grassfire is applied after removal, the maximum depth is smaller than
that of the original circle.

Although it is simple, grassfire provides the foundation for all of our sphere-
packing algorithms.

Sphere Placement Methodology
After grassfiring the tumor model, the deepest point in the tumor is easily

found. Reasonably, the deeper the point in the tumor, the more likely it is
that a large radius sphere can be placed without harming normal tissue. Large
(particularly 9-mm) spheres being placed in the tumor increases the coverage of
the solution. Conversely, the smallest sphere (2-mm radius) is the least efficient
in eradicating cancerous tissue. For the average tumor size, the 2-mm sphere
removes less than 1% of the volume. Therefore, we place asmany large spheres
as possible before placing smaller spheres.
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Figure 1. Grassfire algorithm flowchart.
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First-Deepest Method
The first-deepest method begins by applying the grassfire algorithm to the

tumor data. We generate a list of the deepest voxels (nearly all volumes will
havemultiple “deepest” points after the layering process). Thismethod simply
takes the first voxel off that list and places the removal sphere at that location;
the radius of the sphere used is determined from the depth value at that voxel.
For example, if a voxel is 8 layers deep (and thus 8 mm deep), then a 7-mm
radius sphere can be removed from that location without harming healthy
tissue.

Step-by-Step
1. Grassfire the tumor data.

2. Grab one of the points at the deepest level.

3. Calculate the equation for the sphere centered at that point with the largest
acceptable radius.

4. Set all voxels within the radius of the sphere to zero (effectively removing a
spherical portion of tumor).

5. Reset all nonzero voxels to 1s (resetting the tumor for another grassfire run).

6. Return to step 1.

This method is very robust; when a sphere is removed, it is simply seen as
a new tumor boundary, so any of the variables such as shot size, number of
shots, or tumor shape can change and the algorithm still works.

Variations
We try to improve themethod by looking down the list of the deepest voxels

to find a more appropriate sphere center. We accomplish this by giving each
voxel a score based on the depths of its neighboring points. Essentially, the
algorithm tries to place the sphere at the greatest possible average depth. But
doing this does not improve the total coverage; in fact, this algorithm is inferior
to the first-deepest method. Placing the sphere as deep as possible reduces the
depth of the next iteration, preventingmore large spheres frombeing placed. A
better strategywould be placing the sphere as shallow as possible (see Figure 2
for a 2D example), in an effort to leave room for more large spheres.

Steepest Descent Method
The method of steepest descent tries to place the largest possible sphere (as

determined by grassfire) close to the tumor boundary. The steepest descent
uses a scoring function to find the best location for the biggest sphere.
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Figure 2a. A single large circle in the cen-
ter prevents placement of any more large
circles.

Figure 2b. If the first circle is placed far
from the center, a second large circle can
fit.

Starting from the deepest voxel, we calculate the gradient of the score func-
tion and proceed along the steepest path until a local max is reached, and this
point is used as a sphere isocenter. This is implemented as follows:

1. Calculate the score of the deepest voxel.

2. Calculate the score of all surrounding voxels.

3. If the original voxel has the highest score, it becomes an isocenter, otherwise
move to the highest scoring voxel and go back to step 1.

Scoring Function
This method is only as good as the scoring function. We have two factors,

W1 andW2, that figure into the score of a given voxel.
The W1 factor measures the depth of any nearby voxels; more specifically,

it is an estimation of the depth-density of a sphere centered at that voxel. More
rigorously defined, we estimate theW1 at voxel (x0, y0, z0):

W1 ≈
∫∫∫

S(x,y,z)
D(x, y, z) dxdydz

total volume of sphere
,

where S(x0, y0, z0) is a sphere centered at (x0, y0, z0).
D(x, y, z) is the depth at (x, y, z), so effectively W1 represents the average

depth throughout the sphere’s volume. To speed up the scoring function,
we estimate this volume integral by averaging the depth values for a cube
surrounding the point. The sphere is inscribed within our cube of estimation;
and given that the scoring function will only be a basis of relative comparison,
the level of error is tolerable.
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The W2 factor is used to make sure that normal tissue is not contained in
the shot. Given the sphere size that will be used for the potential shot, we have

W2 =

{
1, if depth (x0, y0, z0) > shot radius;
0, if depth (x0, y0, z0) ≤ shot radius.

This is another place where our decision to prohibit destroying healthy tissue
becomes a central part our solution. Total coverage of the tumor could be im-
proved at the expense of healthy tissue by implementing a continuous scoring
function for theW2 weight.

Finally, the total score is given byW2/W1. This scoring function rewards the
shot for being at a closer distance to the tumor edge (or a removed sphere, since
this looks like an edge to our algorithms) while still being entirely contained
within the tumor.

Improved Steepest Descent Method
The improvement on steepest descent is to allow spheres to be placed closer

to the tumor boundary. The only changes lie in how the W1 and W2 weights
are calculated in the score function.

Altered Score Function
The improved scoring function calculates theW2 score factor in amore rigor-

ous manner. Before, we used the depth (determined by grassfire) to determine
if the shot would fit or not. The grassfire depth is actually a conservative depth
estimate—there can bemore distance between the voxel and the boundary than
it indicates. To fit a sphere more tightly, we construct a list of the points on the
boundary and consult it each timeW2 is calculated. Now,

W2 =

{
1, if any shot voxels are in {(x, y, z)|(x, y, z) is on tumor boundary} ;
0, else.

Adaptive Method
The adaptive method generates an initial sequence of shots using steepest

descent (coverage could be improved by using improved steepest descent, but
the simulationswould run an order ofmagnitude slower). The initial sequence
is then changed one sphere at a time and repacked until each shot in the se-
quence has been changed once. Theoretically, taking this action allows for the
exchange of a large sphere for many smaller spheres, which may be more ef-
fective. It follows the idea that perhaps some spheres need to be placed poorly
initially in order to allow smarter shots to be placed down the line.
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For instance, consider an initial sequence of length N that starts with the
following shots: { 9 mm, 4 mm, 4 mm, . . . }. Using the same initial tumor,
the adaptive method runs the steepest descent method, but the new sequence
must change the first sphere, so it starts with a 7-mm sphere. On the second
iteration, the new sequence keeps the leading 9-mm sphere but must change
the second element to a 2-mm sphere. The third iteration starts with a 9-mm
sphere, followed by a 4-mm sphere, and then changes the third sphere to a
2-mm sphere. This continues until all N − 1 sequences have been generated.
We seek and use the sequence with maximum coverage.

Quantitative Results

Table 1.

Comparison of methods.

Method Timing % Coverage
Avg. Relative Mean SD Min. Max.
(s) speed

First-deepest 83 1 34 5.2 20 45
Steepest descent 104 1.25 38 2.9 32 45
Improved steepest descent 229 2.8 37 6.2 28 56
Adaptive 1025 12.3 40 2.5 35 44

We ran each method on the same suite of 100 test cases, except for the
adaptive method, for which, because of its longer runtime we used a subset of
20 cases. Table 1 contains a summary of the results. The maximum coverage
that we could achieve was 56% (Figure 3).

Our algorithms work on tumors of arbitrary shape, even disjoint tumors.
The result of one such pack is shown in Figure 4.

Qualitative Results

First-Deepest Method
As expected, this algorithm’s performance is quantitatively the weakest.

The maximum coverage of 45% is actually slightly better than the other meth-
ods. However, the minimum value of 20%, as well as the average of 34% are
quite low compared with other methods. It also exhibits large random varia-
tions in coverage, meaning that the algorithm is equally likely to fill in a low
percentage as it is to fill in a relatively high percentage of a tumor.

The method is inconsistent, yields the lowest average coverage of all meth-
ods, but it is the fastest.
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Figure 3. Our best result: 56% coverage.
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Figure 4. Sphere packing into two disjoint tumors.
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Steepest Descent
The minimum and average coverages are significantly better than for first-

deepest, and the method is much more consistent. This makes sense, because
this method adapts to variations in tumor size and shape rather than using the
first available isocenter for each sphere. It is fast compared to the improved
steepest descent and adaptive methods.

Improved Steepest Descent
This algorithm is similar to steepest descent, except for the ability to pack

spheres closer to edges andother spheres. Thismethoddoes poorly on average,
worse than steepest descent and the adaptive method. But it yields the best
coverages—over 50% on four different test cases. Also, this method has the
highest deviation of all our methods.

Adaptive Method
Theaverage coverageof approximately 40% is thebest of all four algorithms,

and this method also has the lowest standard deviation. But it is the slowest
and most complicated algorithm.

Conclusions
All of our algorithms have strengths and weaknesses. The first-deepest

method is fast, while steepest descent is consistent in coverage. Improved
steepest descent yields some of the best results in terms of coverage, while
the adaptive algorithm maintains the highest average coverage and smallest
standard deviation.

Weaknesses
Prohibition of hot spots and radiating healthy brain tissue prevents our

algorithms from covering much of the tumor.

Strengths
Ouralgorithmscanprocessanypossible tumor. Theyare“patient-friendly”—

they don’t destroy anything outside of the tumor, nor do they produce spheres
that intersect each other. They are also simple and robust.
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Future Work
It would be nice to merge the adaptive algorithm with steepest descent to

try to build up the coverage.
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