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Introduction
We develop a series of mathematical models to investigate relationships

between overbooking strategies and revenue.
Our first models are static, in the sense that passenger behavior is pre-

dominantly time-independent; we use a binomial random variable to model
consumer behavior. We construct an auction-style model for passenger com-
pensation.

Our second set of models is more dynamic, employing Poisson processes
for continuous time-dependence on ticket purchasing/cancelling information.

Finally, we consider the effects of the post-September 11 market on the in-
dustry. We consider a particular company and flight: Frontier Airlines Flight
502. Applying the models to revenue optimization leads to an optimal book-
ing limit of 15% over flight capacity and potentially nets Frontier Airlines an
additional $2.7 million/year on Flight 502, given sufficient ticket demand.

Frontier Airlines: Company Overview
Frontier Airlines, a discount airline and the second largest airline operating

out of Denver International Airport (DIA), serves 25 cities in 18 states. Frontier
offers two flights daily from DIA to LaGuardia Airport in New York. We focus
on Flight 502.
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Technical Considerations and Details
We discuss regulations for handling bumped passengers, airplane specifi-

cations, and financial interests.

Overbooking Regulations
When overbooking results in overflow, the Department of Transportation

(DOT) requires airlines to ask for volunteers willing to be bumped in exchange
for compensation. However, the DOT does not specify how much compen-
sation the airlines must give to volunteers; in other words, negotiations and
auctions may be held at the gate until the flight’s departure. A passenger who
is bumped involuntarily is entitled to the following compensation:

• If the airline arranges substitute transportation such that the passenger will
reach his/her destinationwithin one hour of the original flight’s arrival time,
there is no obligatory compensation.

• If the airline arranges substitute transportation such that the passenger will
reach his/her destination between one and two hours after the original
flight’s arrival time, the airline must pay the passenger an amount equal
to the one-way fare for flight to the final destination.

• If the substitute transportation is scheduled to arrive any later than two
hours after the original flight’s arrival time, or if the airline does not make
any substitute travel arrangements, the airline must pay an amount equal to
twice the cost of the fare to the final destination.

Aircraft Information
Frontier offers only one class of service to all passengers. Thus, we base our

overbooking models on single-class aircraft.

Financial Considerations
Airline booking considerations are frequently based on the break-even load-

factor, a percentageof airplane seat capacity thatmust befilled to acquireneither
loss or profit on a particular flight. The break-even load-factor for Flight 502 in
2001 was 57.8%.

Assumptions
• We need concern ourselves only with the sale of restricted tickets. Fron-
tier’s are nonrefundable, save for the ability to transfer to another Frontier
flight for $60 [Frontier 2001]. Restricted tickets represent all but a very small
percentage of all tickets, andmany ticket brokers, such as Priceline.com, sell
only restricted tickets.



Probabilistically Optimized Airline Overbooking Strategies 319

• Ticketholders who don’t show up at the gate spend $60 to transfer to an-
other flight.

• Bumped passengers from morning Flight 502 are placed, at the latest, 4 h
35 min later on Frontier’s afternoon Flight 513 to the same destination.
Frontier Airlines first attempts to place bumped passengers on other air-
lines’ flights to the same destination. If it can’t do so, Frontier bumps other
passengers from the later Frontier flight to make room for the originally
bumped passengers.

• The annual effects/costs associatedwith bumping involuntary passengers
is negligible in comparison to the annual effects/costs of bumping volun-
tary passengers. According to statistics provided by the Department of
Transportation, 4% of all airline passengers are bumped voluntarily, while
only 1.06 passengers in 10,000 are bumped involuntarily. With a maximum
delay for bumped passengers of 4 h 35 min, the average annual cost to
Frontier of bumping involuntary passengers is on the order of $100,000—
negligible compared to costs of bumping voluntary passengers.

The Static Model
Our firstmodel for optimizing revenues is static, in the sense that passenger

behavior is predominantly time-independent: All passengers (save no-shows)
arrive at the departure gate independently. This model does not account for
when passengers purchase their tickets. This system may be modeled by the
following steps:

• Introduce a binomial random variable for the number of passengers who
show up for the flight.

• Define a total profit function dependent upon this random variable.

• Apply this function to various consumer behavior patterns.

• Compute (for each behavioral pattern) an optimal number of passengers to
overbook.

A Binomial Random Variable Approach
We let the binomial random variableX be the number of ticketholders who

arrive at the gate after B tickets have been sold; thus, X ∼ Binomial(B, p).
Numerous airlines consistently report that approximately 12% of all booked
passengers do not show up to the gate (due to cancellations and no-shows)
[Lufthansa 2000], so we take p = .88.

Pr{i passengers arrive at the gate} = Pr{X = i} =
(
B

i

)
pi(1− p)B−i.
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Modeling Revenue
We define the following per-flight total profit function and subsequently

present a detailed explanation.

Tp(X) =(B −X)R+⎧⎪⎨
⎪⎩

Airfare×X − CostFlight, X ≤ C$̄;
Airfare − CostAdd × (X − C$̄), C$̄ < X ≤ C;
Airfare − CostAdd × (X − C$̄)− Bump(X − C), X > C,

where

R = transfer fee for no-shows and cancellations,

B = total number of passengers booked,

Airfare = a constant

CostFlight = total operating cost of flying the plane

CostAdd = cost to place one passenger on the flight

Bump = the Bump function (to be defined)

C$̄ = number of passengers required to break even on the flight

C = the full capacity of the plane (number of seats)

For Airfare, we use the average cost of restricted-ticket fare over a one-week
period in 2002: $316. CostFlight is based on the break-even load-factor of 57.8%;
for Flight 502, we take CostFlight = $24,648 [Frontier Airlines 2001]. The average
cost associated with placing one passenger on the plane is CostAdd ≈ $16. The
break-even occupancy is determined from the break-even load-factor; since
Flight 502 uses an Airbus A319 with 134 seats, we take C = 134 and C$̄ = 78.

The Bump Function
Weconsider various overbooking strategies, the last three ofwhich translate

directly into various Bump functions.

• No Overbooking

• Bump ThresholdModelWe assign a “Bump Threshold” (BT) to each flight,
a probability of having to bump one or more customers from a flight given
B and p:

Pr{X > flight capacity} < BT.
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We take BT = 5% of flight capacity. The probability that more thanN ticket-
holders arrive at the gate, given B tickets sold, is

Pr{X > N} = 1− Pr{X ≤ N} = 1−
N∑

i=1

(
B

i

)
pi(1− p)B−i.

This simplistic model is independent of revenue and produces (through
simple iteration) anoptimalnumberof ticket sales (B) for expectingbumping
to occur on less than 5% of flights.

• Linear Compensation Plan This plan assumes that there is a fixed cost asso-
ciated with bumping a passenger, the same for each passenger. The related
Bump function is

Bump(X − C) = B$ × (X − C),

where (X − C) is the number of bumped passengers and B$ is the cost of
handling each.

• Nonlinear Compensation Plan Steeper penalties must be considered, since
there is a chain reaction of expenses incurred when bumping passengers
from one flight causes future bumps on later flights. Here we assume that
the Bump function is exponential. Assuming that flight vouchers are still
adequate compensation at an average cost of 2∗Airfare+$100 = $732when
there are 20 bumped passengers, we apply the cost equation

BumpNL(X − C) = B$(X − C)er(X−C),

whereB$ is the ompensation constant and r = r(B$) is the exponential rate,
chosen to fit the curve to the points (0, 316) and (20, 732).

• Time-Dependent Compensation Plan (Auction) The primary shortcoming
of the nonlinear compensation plan is that it does not deal with flights with
too few voluntarily bumped passengers, where the airline must increase its
compensation offering. We now approximate the costs of an auction-type
compensation plan.

This plan assumes that the airline knows the number of no-shows and can-
cellations one-half hour prior to departure. The following auction system is
employed. At 30 min before departure, the airline offers flight vouchers to
volunteers willing to be bumped, equivalent in cost to the original airfare.
This offer stands for 15 min, at which time the offer increases exponentially
up to the equivalent of $948 by departure time. We chose this number as
twice the original airfare (which is the maximum obligatory compensation
for involuntary passengers if they are forced to wait more than 2 h), plus
one more airfare costin the hope that treating the customers so favorably
will result in future business from the same customers. These specifications
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are enough to determine the corresponding time-dependent Compensation
function,plotted in Figure 1.

Compensation(t) =

{
316, 0 ≤ t ≤ 15 min;
105.33e0.07324 t, 15 min < t ≤ 30 min.
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Figure 1. Auction offering (compensation)

Consideration of passenger behavior suggests that we use a Chebyshev
weighting distribution for this effort (shown in Figure 2). A significant num-
ber of passengers will take flight vouchers as soon as they become available.

We simulate this random variable, which has probability density function

f(s) =
1

π
√

1− s2 , s ∈ [−1, 1],

and cumulative distribution function

F (τ) =
∫ τ

−1

1

π
√

1− η2 dη =
1
2

+ sin−1(τ),

where η is a dummyvariable. Inverting the cumulative distribution function
results in a method for generating random variables with the Chebyshev
distribution [Ross 1990]:

F−1(τ) = sin
[
π(U − 1

2 )
]
,



Probabilistically Optimized Airline Overbooking Strategies 323

0 5 10 15 20 25 30
0

1

2

3

4

5

6

Time

P
ro

ba
bi

lit
y 

at
 t

Time before departure vs. Probability of Voluntary Bump

Figure 2. Chebyshev weighting function for offer acceptance

where U is a random uniform variable on [0, 1].

With a linear transformation from the Chebyshev domain [−1, 1] to the
time interval [0, 30] via t = 15τ + 15, we find a random variable t that takes
on values from 0 to 30 according to the density function f(s). Figure 3 shows
the results of using this process to generate 100,000 time values. We use this
random variable to assign times for compensation offer acceptance under
the auction plan.

The total costofbumping (X−C)passengers is
∑X−C

i=1 Compensation(ti).

Optimizing Overbooking Strategies
Our goal is to maximize the expected value of the total profit function,

E[TP (X)], given the variability of the bump function and the probabilistic
passenger arrival model.

There are competing dynamic effects at work in the total profit function.
Ticket sales are desirable, but there is a point at which the cost of bumping
becomes too great. Also, the variability of the number of passengers who show
up affects the dynamics. The expected value of the total profit function is

E[TP (X)] =
B∑

i=1

TP (i)
(
B

i

)
pi(1− p)B−i.
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Figure 3. Histogram of 100,000 draws from the Chebyshev distribution.

We optimize the revenue by finding themost appropriate booking limit (B)
for any bump function. Solving such a problem analytically is unrealistic; any
solution would require the inversion of a sum of factorial functions. Therefore,
we turn to computation for our results. Wewrote and testedMatLABprograms
that solve for B over a range of trivial bump Functions.

Results of Static Model Analysis

No Overbooking
If Frontier Airlines does not overbook its flights, it suffers a significant cost

in terms of loss of opportunity. If the number of people that booked (B) equals
plane capacity (C), the expected value ofX (number of passengers who arrive
at the gate) is pB = pC = .88×134 ≈ 118 passengers. Assuming (as in the total
profit function) that each passenger beyond the 78th is worth $300 in profit, the
expected profit is nearly

(134 − 118) × $60 + $300 × (118 − 78) = $12,960

per flight.This is only an estimate, since a smaller or larger proportion than
57.8% of ticket-holding passengers may arrive at the gate. The profit is sizeable
but there are still (on average) 16 empty seats! The approximate lost opportu-
nity cost is $300 × 16 = $4,800! Thus, not overbooking sends Flight 502 on its
way with only 63% of its potential profitability.
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Bump Threshold Model
Using a 0.05 bump threshold, we compute an optimal number of passengers

to book on Flight 502. Given the Airbus A319 capacity of 134 passengers and
a passenger arrival probability of p = .88, the optimal number of tickets to sell
to guarantee that bumping occurs less than 5% of the time is B = 145, or 107%
of flight capacity.

Linear Compensation Plan
Table 1 shows the expected profit for various linear bump functions.

Table 1.

Linear bump functions compared.

Bump cost Optimal # Expected profit
per passenger to book per flight

200 ∞ ∞
316 162 $17,817
400 156 $17,394
500 153 $17,121
600 152 $16,940
700 151 $16,799
800 151 $16,692
900 150 $16,601
1000 150 $16,526

If Frontier were to compensate bumped passengers less than the cost of
airfare, bumping passengers would always cost less than revenue gained from
ticket sales. Thus, assuming it could sell as many tickets as it wanted, Frontier
would realize an unbounded profit on each flight! Obviously, the linear com-
pensation plan is not realistic in this regime, and we must wait for subsequent
models to see increased real-world applicability. These results agree with the
result of using a simple bump threshold above and indicate an average profit
of approximately $17,000. In comparison with using no overbooking strategy
at all, Frontier gains additional profit of $4,000 per flight!

The actual dynamics of the problemmay be seen in Figure 4, where compet-
ing effects form an optimal number of tickets to sell (B) when Frontier assumes
a sizeable enough compensation average. We can also see the unboundedprofit
available in the unrealistic regime.

Nonlinear Compensation Plan
Numerical results for the more realistic nonlinear model paint a more rea-

sonable picture.
Table 2 recommends booking limmits similar to (though slightly higher

than) previous models. The dynamics may be seen in the Figure 5.
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Figure 4. Per-flight profit vs. booking limit (B) for different bump costs (Linear Compensation
Plan)

Table 2.

Nonlinear bump functions compared.

Bump function Optimal number Profit
to book per flight

50e0.134(X−C)(X − C) 160 $18,700
100e0.100(X−C)(X − C) 158 $18,240
200e0.065(X−C)(X − C) 156 $17,722
316e0.042(X−C)(X − C) 154 $17,363

All nonlinear bump functions that we investigated result in a maximum
realizable profit, as expected.

Time-Dependent Compensation Plan
The histogram of 1,000 runs using the time-dependent compensation plan

in Figure 6 shows that the optimal booking limit is most frequently B = 154.
Figure 7 is a graph of expected total profit versus the optimal booking limit
for 15 trials, displaying the randomness due to the Chebyshev draws at higher
values of B. If B is too low, then all models have the same profit behavior,
because the randomness from the overbooking scheme is not introduced un-
til customers are bumped. This graph also shows that regardless of random
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Figure 5. Per-flight profit vs. booking limit (B) for different bump functions (Nonlinear Compen-
sation Plan).

effects, profitability is maximized around B = 160.

The Dynamic Model
Many of the assumptions in the binomial-basedmodels are loosened in this

dynamic setting. Continuous time allows for more detailed analysis of the
order of events in the airline booking problem. Keeping track of the order of
reservation requests, ticket bookings, and cancellations results in a model that
attempts to recommend what ticketing agents should do at a certain time. In
the “Firesale Model,” we attempt to increase revenue by selling the tickets of
cancellations to customers who would otherwise be denied tickets due to a
fixed booking limit.

Reservation Process
We simulate the booking/reservations process, which often begins weeks

before departure and continues right up until departure (due, for example, to
other airlines booking their bumped customers into Frontiers’ empty seats).

To model the stream of reservation requests, we employ a Poisson process
{N(t), t ≥ 0}—a counting process that begins at zero (N(0) = 0) and has
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Figure 6. Time-dependent compensation plan simulated 1,000 times
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Figure 7. 15 time-dependent compensation plan simulations
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independent increments, with the number of events in any interval of length
t Poisson-distributed with mean λt [Ross 2000]. The interarrival times of a
Poisson process are distributed according to an exponential distribution with
rate parameter λ. Each reservation request comes with a variable number
of tickets requested for that reservation. The number of tickets requested is
generated from some specified batch distribution, BatchD, that we introduce
later.

This arrangement results in a compound Poisson process (in this case,
a“stuttering” process [McGill and Garrett 1999]), which provides a more rea-
sonable fit to real-world reservation request data than simpler processes.

Simulating the first T time units of a Poisson process using the method
in Ross [1990] results in a vector at of arrival times for the A = length(at)
reservation requests received.

Another vector, Bnum, the number of tickets requested in each of the A
reservations, is also generated according to the batch distribution. The density
BatchD is shown in Figure 9; it states that callers reserve anywhere from 1 to 4
tickets at a time, with varying probabilities for each number. The total number
of tickets (potential fares) requested is then

∑
i(Bnum(i)).
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Figure 9. Density function for number of tickets in a batch of reservations.

The arrival rates for these reservation requests are derived by setting the
expected value of the Poisson process over an interval of length T equal to the
average ticket demandAD that we expect. Then a rate of λ = AD/EBT , where
EB is the expectedvalueofBatchD (1.9 in this case),will onaveragegenerateAD

tickets. The histogram in Figure 10 shows the results of a simulation of 10,000
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Poisson processes outputting the number of reservations requested when the
average demand for tickets was 134 (AD = C).
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Figure 10. Histogram of number of reservation requests for 10,000 flights with an average demand
of 134 tickets.

Cancellations and No-Shows
The binomial-based static models do not distinguish between cancellations

(tickets voided before the flight departs) and no-shows (tickets not used or
voided by flight departure); however, the dynamic model is well-suited for
monitoring these events. We assume that 75% of unused tickets are cancella-
tions and 25% are no-shows. Additionally, we assume that the time of cancel-
lation for a set of tickets reserved together is uniformly distributed from the
time that the tickets are granted to the time that the flight departs. This means
that some cancellations occur almost immediately after the ticket(s) are granted
(e.g., due to a typo on an online ticket service form), while some occur just be-
fore a plane is scheduled to depart (e.g., a last-minute change of plans). Lastly,
we assume thatmultiple tickets in a single reservation behave equivalently (i.e.,
families act as unbreakable groups!).

To simulate this process, for each requested reservation a biased coin is
flipped to determine with probability p if the group will keep their tickets. If
not, another biased coin is flipped to determine whether the unused tickets are
cancellations or no-shows. If a cancellation occurs, a cancellation time is drawn
uniformly between that batch’s arrival time and the flight departure time.
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Dynamic Booking
Dynamic Test Model

We use the dynamic model to make the binomial-based models more re-
alistic by eliminating some assumptions and introducing randomness. The
Dynamic Test allows for “group tickets” (for both reservations and cancella-
tions). The Dynamic Test requires that average ticket demandAD be specified,
so as to confirm the expected effects of less demand for tickets.

Firesale Model
The Firesale Model uses cancellation times to sell all possible tickets. If the

number of tickets requested (at time t) for a particular reservation plus Tix (the
number of tickets approved and still held at time t) is less than the predeter-
mined booking limit (B), then a reservation request is approved. Conversely, if
Tix(t) is equal to the booking limit or if the sale of themultiple tickets requested
in a reservation batch would push Tix(t) over the booking limit, the request is
rejected. Thus, for a process with no cancellations, reservation requests total-
ing less than the booking limit would be approved while subsequent requests
would be rejected. The Fireside Model is highly dependent on the average
demand (i.e., if demand is high enough, the airline would end upwith an over-
whelming majority of no-shows, as opposed to cancellations). The Firesale
Model is the most realistic model developed in this paper.

Results of Dynamic Model Analysis
The Fireside Model attempts to capture a scenario where all tickets of can-

cellations are sold as long as there are customerswilling to buy them. If demand
for tickets is high enough, we expect to sell all tickets of cancellations, resulting
in a large number of bumped passengers. However, because the airline profits
$60 from each cancellation or no-show and because the numbers of both cancel-
lations and no-shows continue to increase as more tickets are sold, reasonable
results are expected for reasonable ticket demand.

Figure 11plots expected profit as a function of bumping limit as determined
from 1,000 Fireside Model simulations. An average demand twice that of ca-
pacity (AD = 268) is used and a maximum profit is realized at a booking limit
of 163. Most importantly, this figure displays how a small variation in book-
ing limit could significantly alter profit. A change in either direction of 3 in
corresponds to a loss of more than $1,000 profit.
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Figure 11. 1,000 simulations of the Fireside Model.

Dynamic Testing of the Static Model
The dynamic model allows us to test the results from the static (binomial-

based) models in amore realistic setting. The Dynamic Test allows tickets to be
reserved in batches and introduces the randomness experienced in real-world
airline booking.

In all testing, 10,000 simulations are performed for each booking limit (B)
and then expected profits are computed. Booking limit vs. Profit ($) is plotted
for appropriate booking limit values. The average demand (AD) used in this
test is kept constant at twice the capacity of the airplane (so AD = 268), to
simulate a very large pool of customers so that the overbooking process could
be tested.

Linear Compensation Plan
We tested two Bump costs (B$ = $316 and B$ = $600) with different be-

haviors (as predicted by the static model).
Figure 12 shows that for this compensation plan, an optimal booking limit is

B = 155, an increase of 3 from the optimal value for the static model. However,
profit drops off steeply for booking limits over 155, indicating that a more
conservative strategy might be to lower the bumping limit to ensure that this
steep decline is rarely reached.
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Figure 12. 10,000 simulations of the linear compensation plan with B$ = $600.

Figure 13 corresponds to a bump cost of 316; the optimal booking limit is
now 166, again an increase (from 162).

Nonlinear Compensation Plan
We tested two nonlinear bump coefficients (B$ = 316 and B$ = 100) with

different behaviors (as predicted by the static model).
Figures 14and15demonstrate thenegative effect of toohighabooking limit.

For nonlinear bumpcoefficientsB$ = 316 andB$ = 100, optimal booking limits
from the static model are 154 and 160, with Dynamic Test result values of 154
and 158.

Time-Dependent Compensation Plan
Figure 16 shows that the optimal booking limit for the time-dependent

compensation plan is B = 155, an increase of 1 from the static model. Profit
appears to rise relatively steeply until the optimal booking limit is reached and
then falls steeply. Thus, in ourmost realistic staticmodel, a careful overbooking
plan matters the most! If the booking limit were altered by 3, the profit would
shrink by more than $1,000, similar to the result detailed in the Fireside Model.
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Figure 13. 10,000 simulations of the linear compensation plan with B$ = $316.
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Figure 14. 10,000 simulations of the nonlinear compensation plan with B$=316.
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Figure 15. 10,000 simulations of the nonlinear compensation plan with B$=100.
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Figure 16. 10,000 simulations of the time-dependent compensation plan.
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Post-September 11 Effects
Security checks (at Denver International Airport) add only 10 min to check-

in [“Frontier operating at 80%” 2001], which may be considered negligible.
Themost significant post-September 11 effect that the airlinesmust consider

is the consumer fear. The individual probability of passenger arrival p should
not change drastically, since ticket-purchasing customers after September 11
are fully aware of the risks involved. A consequence of September 11 that is
difficult to model is the decrease in average demand for flight reservations.

Model Strengths and Weaknesses

Strengths
• Time-dependent auction model for pre-flight compensation: When Frontier
begins to offer compensation to voluntarily bumped passengers one-half
hour before departure, our model allows consumer behavior to influence
the financial results.

• Time-dependentdecisionprocess in thedynamicmodel: Thedynamicmodel
allows ticketing agents to decide whether or not to accept reservation re-
quests based on the number of tickets sold by then and based on time until
departure.

• Multiple considerations of consumer behavior via bump functions: The
implementation of multiple bump functions allow for testing alternative
strategies for compensation. Profit and customer satisfaction may then be
balanced depending upon the company’s short-term or long-term interests.

• Varying degrees of model complexity: Our earlymodels are simple, making
sizeable simplifying assumptions to exhibit the most basic dynamics inher-
ent in the problem. We take small steps of increasing complexity towards a
more realistic model. The intuitive relationships between the results from
each step lead to increased confidence in the stability and applicability of
the most involved models.

Weaknesses
• Absence of a stability analysis: We lack an adequate mathematical under-
standing of the stability of our models. Varying parameters like p could
potentially alter our results.

• Infinite customer pool in the static model: In our static model, we assume
that for any booking limit we set, all tickets will be sold.
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• Insufficient data: The only operational data that we could get from Fron-
tier Airlines was its quarterly report, which contains general information on
how many people flew, operating costs, revenues, number of flights flown,
and occupancy rates. However, our model lacks information regarding can-
cellation rates, no-show rates, cost per flight, rates of reservation requests,
and ratio of restricted tickets sold to unrestricted tickets sold. The lack of
this information limits us because our parameters are not based on historical
data, and therefore we cannot be confident in the accuracy of our rates.

Conclusion and Recommendations
Our models are quite consistent in recommending similar booking limits:

154 passengers on 134-seat Flight 502, 115% of capacity. This limit results in an
average of $17,000 per flight; so this one flight alone, by employing one of our
overbooking strategies, nets the company an extra $2.7 million profit per year,
under the limiting assumption of an infinite demand pool.
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