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2.2 CONTINUITY

In this section we study continuous functions of a real variable. We will prove some impor-

tant theorems about continuous functions that, although intuitively plausible, are beyond

the scope of the elementary calculus course. They are accessible now because of our better

understanding of the real number system, especially of those properties that stem from the

completeness axiom.
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The definitions of

f .x0�/ D lim
x!x0�

f .x/; f .x0C/ D lim
x!x0C

f .x/; and lim
x!x0

f .x/

do not involve f .x0/ or even require that it be defined. However, the case where f .x0/ is

defined and equal to one or more of these quantities is important.

Definition 2.2.1

(a) We say that f is continuous at x0 if f is defined on an open interval .a; b/ containing

x0 and limx!x0
f .x/ D f .x0/.

(b) We say that f is continuous from the left at x0 if f is defined on an open interval

.a; x0/ and f .x0�/ D f .x0/.

(c) We say that f is continuous from the right at x0 if f is defined on an open interval

.x0; b/ and f .x0C/ D f .x0/.

The following theorem provides a method for determining whether these definitions are

satisfied. The proof, which we leave to you (Exercise 1), rests on Definitions 2.1.2, 2.1.5,

and 2.2.1.

Theorem 2.2.2

(a) A function f is continuous at x0 if and only if f is defined on an open interval .a; b/

containing x0 and for each � > 0 there is a ı > 0 such that

jf .x/ � f .x0/j < � (1)

whenever jx � x0j < ı:
(b) A function f is continuous from the right at x0 if and only if f is defined on an

interval Œx0; b/ and for each � > 0 there is a ı > 0 such that .1/ holds whenever

x0 � x < x0 C ı:
(c) A function f is continuous from the left at x0 if and only if f is defined on an interval

.a; x0� and for each � > 0

there is a ı > 0 such that .1/ holds whenever x0 � ı < x � x0:

From Definition 2.2.1 and Theorem 2.2.2, f is continuous at x0 if and only if

f .x0�/ D f .x0C/ D f .x0/

or, equivalently, if and only if it is continuous from the right and left at x0 (Exercise 2).

Example 2.2.1 Let f be defined on Œ0; 2� by

f .x/ D
�
x2; 0 � x < 1;
x C 1; 1 � x � 2
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(Figure 2.2.1); then

f .0C/D 0 D f .0/;
f .1�/D 1 ¤ f .1/ D 2;
f .1C/D 2 D f .1/;
f .2�/D 3 D f .2/:

Therefore, f is continuous from the right at 0 and 1 and continuous from the left at 2, but

not at 1. If 0 < x, x0 < 1, then

jf .x/� f .x0/j D jx2 � x2
0 j D jx � x0j jx C x0j

� 2jx � x0j < � if jx � x0j < �=2:

Hence, f is continuous at each x0 in .0; 1/. If 1 < x, x0 < 2, then

jf .x/� f .x0/j D j.x C 1/ � .x0 C 1/ D jx � x0j
< � if jx � x0j < �:

Hence, f is continous at each x0 in .1; 2/.

2

3

21

1

y

x

y = x + 1,  1 ≤ x ≤ 2

y = x2,  0 ≤ x < 1

Figure 2.2.1

Definition 2.2.3 A function f is continuous on an open interval .a; b/ if it is continu-

ous at every point in .a; b/. If, in addition,

f .b�/ D f .b/ (2)

or

f .aC/ D f .a/ (3)
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then f is continuous on .a; b� or Œa; b/, respectively. If f is continuous on .a; b/ and

(2) and (3) both hold, then f is continuous on Œa; b�. More generally, if S is a subset of

Df consisting of finitely or infinitely many disjoint intervals, then f is continuous on S if

f is continuous on every interval in S . (Henceforth, in connection with functions of one

variable, whenever we say “f is continuous on S” we mean that S is a set of this kind.)

Example 2.2.2 Let f .x/ D
p
x, 0 � x <1. Then

jf .x/� f .0/j D
p
x < � if 0 � x < �2;

so f .0C/ D f .0/. If x0 > 0 and x � 0, then

jf .x/� f .x0/j D j
p
x �px0j D

jx � x0jp
x Cpx0

� jx � x0jp
x0

< � if jx � x0j < �
p
x0;

so limx!x0
f .x/ D f .x0/. Hence, f is continuous on Œ0;1/.

Example 2.2.3 The function

g.x/ D 1

sin�x

is continuous on S D
S1

nD�1.n; n C 1/. However, g is not continuous at any x0 D n

(integer), since it is not defined at such points.

The function f defined in Example 2.2.1 (see also Figure 2.2.1) is continuous on Œ0; 1/

and Œ1; 2�, but not on any open interval containing 1. The discontinuity of f there is of the

simplest kind, described in the following definition.

Definition 2.2.4 A function f is piecewise continuous on Œa; b� if

(a) f .x0C/ exists for all x0 in Œa; b/;

(b) f .x0�/ exists for all x0 in .a; b�;

(c) f .x0C/ D f .x0�/ D f .x0/ for all but finitely many points x0 in .a; b/.

If (c) fails to hold at some x0 in .a; b/, f has a jump discontinuity at x0. Also, f has a

jump discontinuity at a if f .aC/ ¤ f .a/ or at b if f .b�/ ¤ f .b/.

Example 2.2.4 The function

f .x/ D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

1; x D 0;
x; 0 < x < 1;

2; x D 1;
x; 1 < x � 2;
�1; 2 < x < 3;

0; x D 3;
(Figure 2.2.2) is the graph of a piecewise continuous function on Œ0; 3�, with jump discon-

tinuities at x0 D 0, 1, 2, and 3.
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The reason for the adjective “jump” can be seen in Figures 2.2.1 and 2.2.2, where the

graphs exhibit a definite jump at each point of discontinuity. The next example shows that

not all discontinuities are of this kind.

Example 2.2.5 The function

f .x/ D

8
<̂

:̂

sin
1

x
; x ¤ 0;

0; x D 0;

is continuous at all x0 except x0 D 0. As x approaches 0 from either side, f .x/ oscillates

between �1 and 1 with ever-increasing frequency, so neither f .0C/ nor f .0�/ exists.

Therefore, the discontinuity of f at 0 is not a jump discontinuity, and if � > 0, then f is

not piecewise continuous on any interval of the form Œ��; 0�, Œ��; ��, or Œ0; ��.

Theorems 2.1.4 and 2.2.2 imply the next theorem (Exercise 18).

Theorem 2.2.5 If f and g are continuous on a set S; then so are f C g; f � g; and

fg: In addition; f =g is continuous at each x0 in S such that g.x0/ ¤ 0:

Example 2.2.6 Since the constant functions and the function f .x/ D x are continu-

ous for all x, successive applications of the various parts of Theorem 2.2.5 imply that the

function

r.x/ D
9 � x2

x C 1
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is continuous for all x except x D �1 (see Example 2.1.7). More generally, by starting

from Theorem 2.2.5 and using induction, it can be shown that if f1, f2, . . . , fn are contin-

uous on a set S , then so are f1 C f2 C � � � C fn and f1f2 � � �fn. Therefore, any rational

function

r.x/ D a0 C a1x C � � � C anx
n

b0 C b1x C � � � C bmxm
.bm ¤ 0/

is continuous for all values of x except those for which its denominator vanishes.

Removable Discontinuities

Let f be defined on a deleted neighborhood of x0 and discontinuous (perhaps even unde-

fined) at x0. We say that f has a removable discontinuity at x0 if limx!x0
f .x/ exists. In

this case, the function

g.x/ D

8
<
:
f .x/ if x 2 Df and x ¤ x0;

lim
x!x0

f .x/ if x D x0;

is continuous at x0.

Example 2.2.7 The function

f .x/ D x sin
1

x

is not defined at x0 D 0, and therefore certainly not continuous there, but limx!0 f .x/ D 0
(Example 2.1.6). Therefore, f has a removable discontinuity at 0.

The function

f1.x/ D sin
1

x

is undefined at 0 and its discontinuity there is not removable, since limx!0 f1.x/ does not

exist (Example 2.2.5).

Composite Functions

We have seen that the investigation of limits and continuity can be simplified by regarding a

given function as the result of addition, subtraction, multiplication, and division of simpler

functions. Another operation useful in this connection is composition of functions; that is,

substitution of one function into another.

Definition 2.2.6 Suppose that f and g are functions with domains Df and Dg . If

Dg has a nonempty subset T such that g.x/ 2 Df whenever x 2 T , then the composite

function f ı g is defined on T by

.f ı g/.x/ D f .g.x//:
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Example 2.2.8 If

f .x/ D logx and g.x/ D 1

1 � x2
;

then

Df D .0;1/ and Dg D
˚
x
ˇ̌
x ¤ ˙1

	
:

Since g.x/ > 0 if x 2 T D .�1; 1/, the composite function f ı g is defined on .�1; 1/ by

.f ı g/.x/ D log
1

1� x2
:

We leave it to you to verify that g ı f is defined on .0; 1=e/[ .1=e; e/[ .e;1/ by

.g ı f /.x/ D 1

1 � .log x/2
:

The next theorem says that the composition of continuous functions is continuous.

Theorem 2.2.7 Suppose that g is continuous at x0; g.x0/ is an interior point of Df ;

and f is continuous at g.x0/: Then f ı g is continuous at x0:

Proof Suppose that � > 0. Since g.x0/ is an interior point of Df and f is continuous

at g.x0/, there is a ı1 > 0 such that f .t/ is defined and

jf .t/ � f .g.x0//j < � if jt � g.x0/j < ı1: (4)

Since g is continuous at x0, there is a ı > 0 such that g.x/ is defined and

jg.x/ � g.x0/j < ı1 if jx � x0j < ı: (5)

Now (4) and (5) imply that

jf .g.x// � f .g.x0//j < � if jx � x0j < ı:

Therefore, f ı g is continuous at x0.

See Exercise 22 for a related result concerning limits.

Example 2.2.9 In Examples 2.2.2 and 2.2.6 we saw that the function

f .x/ D
p
x

is continuous for x > 0, and the function

g.x/ D 9 � x2

x C 1
is continuous for x ¤ �1. Since g.x/ > 0 if x < �3 or �1 < x < 3, Theorem 2.2.7

implies that the function

.f ı g/.x/ D

s
9 � x2

x C 1
is continuous on .�1;�3/ [ .�1; 3/. It is also continuous from the left at �3 and 3.
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Bounded Functions

A function f is bounded below on a set S if there is a real number m such that

f .x/ � m for all x 2 S:

In this case, the set

V D
˚
f .x/

ˇ̌
x 2 S

	

has an infimum ˛, and we write

˛ D inf
x2S

f .x/:

If there is a point x1 in S such that f .x1/ D ˛, we say that ˛ is the minimum of f on S ,

and write

˛ D min
x2S

f .x/:

Similarly, f is bounded above on S if there is a real number M such that f .x/ � M for

all x in S . In this case, V has a supremum ˇ, and we write

ˇ D sup
x2S

f .x/:

If there is a point x2 in S such that f .x2/ D ˇ, we say that ˇ is the maximum of f on S ,

and write

ˇ D max
x2S

f .x/:

If f is bounded above and below on a set S , we say that f is bounded on S .

Figure 2.2.3 illustrates the geometric meaning of these definitions for a function f

bounded on an interval S D Œa; b�. The graph of f lies in the strip bounded by the

lines y D M and y D m, where M is any upper bound and m is any lower bound

for f on Œa; b�. The narrowest strip containing the graph is the one bounded above by

y D ˇ D supa�x�b f .x/ and below by y D ˛ D infa�x�b f .x/.

y

x

y = α

y = β

y = m

y = M

Figure 2.2.3
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Example 2.2.10 The function

g.x/ D
(

1
2
; x D 0 or x D 1;

1 � x; 0 < x < 1;
C

(Figure 2.2.4(a)) is bounded on Œ0; 1�, and

sup
0�x�1

g.x/ D 1; inf
0�x�1

g.x/ D 0:

Therefore, g has no maximum or minimum on Œ0; 1�, since it does not assume either of the

values 0 and 1.

The function

h.x/ D 1 � x; 0 � x � 1;
which differs from g only at 0 and 1 (Figure 2.2.4(b)), has the same supremum and infi-

mum as g, but it attains these values at x D 0 and x D 1, respectively; therefore,

max
0�x�1

h.x/ D 1 and min
0�x�1

h.x/ D 0:

2

1

1

1

y

x
1

1

y

x

(a) (b)

y = g (x) y = 1 − x

Figure 2.2.4

Example 2.2.11 The function

f .x/ D ex.x�1/ sin
1

x.x � 1/ ; 0 < x < 1;

oscillates between˙ex.x�1/ infinitely often in every interval of the form .0; �/ or .1��; 1/,
where 0 < � < 1, and

sup
0<x<1

f .x/ D 1; inf
0<x<1

f .x/ D �1:

However, f does not assume these values, so f has no maximum or minimum on .0; 1/.
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Theorem 2.2.8 If f is continuous on a finite closed interval Œa; b�; then f is bounded

on Œa; b�:

Proof Suppose that t 2 Œa; b�. Since f is continuous at t , there is an open interval It

containing t such that

jf .x/� f .t/j < 1 if x 2 It \ Œa; b�: (6)

(To see this, set � D 1 in (1), Theorem 2.2.2.) The collection H D
˚
It

ˇ̌
a � t � b

	
is

an open covering of Œa; b�. Since Œa; b� is compact, the Heine–Borel theorem implies that

there are finitely many points t1, t2, . . . , tn such that the intervals It1 , It2 , . . . , Itn cover

Œa; b�. According to (6) with t D ti ,

jf .x/� f .ti /j < 1 if x 2 Iti \ Œa; b�:

Therefore,

jf .x/j D j.f .x/ � f .ti //C f .ti /j � jf .x/ � f .ti /j C jf .ti/j

� 1C jf .ti /j if x 2 Iti \ Œa; b�:
(7)

Let

M D 1C max
1�i�n

jf .ti/j:

Since Œa; b� �
Sn

iD1

�
Iti \ Œa; b�

�
, (7) implies that jf .x/j �M if x 2 Œa; b�.

This proof illustrates the utility of the Heine–Borel theorem, which allows us to choose

M as the largest of a finite set of numbers.

Theorem 2.2.8 and the completeness of the reals imply that

if f is continuous on a finite closed interval Œa; b�, then f has an infimum and a supre-

mum on Œa; b�. The next theorem shows that f actually assumes these values at some

points in Œa; b�.

Theorem 2.2.9 Suppose that f is continuous on a finite closed interval Œa; b�: Let

˛ D inf
a�x�b

f .x/ and ˇ D sup
a�x�b

f .x/:

Then ˛ and ˇ are respectively the minimum and maximum of f on Œa; b�I that is; there are

points x1 and x2 in Œa; b� such that

f .x1/ D ˛ and f .x2/ D ˇ:

Proof We show that x1 exists and leave it to you to show that x2 exists (Exercise 24).

Suppose that there is no x1 in Œa; b� such that f .x1/ D ˛. Then f .x/ > ˛ for all

x 2 Œa; b�. We will show that this leads to a contradiction.
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Suppose that t 2 Œa; b�. Then f .t/ > ˛, so

f .t/ >
f .t/C ˛

2
> ˛:

Since f is continuous at t , there is an open interval It about t such that

f .x/ >
f .t/C ˛

2
if x 2 It \ Œa; b� (8)

(Exercise 15). The collection H D
˚
It

ˇ̌
a � t � b

	
is an open covering of Œa; b�. Since

Œa; b� is compact, the Heine–Borel theorem implies that there are finitely many points t1,

t2, . . . , tn such that the intervals It1 , It2 , . . . , Itn cover Œa; b�. Define

˛1 D min
1�i�n

f .ti /C ˛
2

:

Then, since Œa; b� �
Sn

iD1.Iti \ Œa; b�/, (8) implies that

f .t/ > ˛1; a � t � b:

But ˛1 > ˛, so this contradicts the definition of ˛. Therefore, f .x1/ D ˛ for some x1 in

Œa; b�.

Example 2.2.12 We used the compactness of Œa; b� in the proof of Theorem 2.2.9

when we invoked the Heine–Borel theorem. To see that compactness is essential to the

proof, consider the function

g.x/ D 1 � .1 � x/ sin
1

x
;

which is continuous and has supremum 2 on the noncompact interval .0; 1�, but does not

assume its supremum on .0; 1�, since

g.x/ � 1C .1 � x/
ˇ̌
ˇ̌sin

1

x

ˇ̌
ˇ̌

� 1C .1 � x/ < 2 if 0 < x � 1:

As another example, consider the function

f .x/ D e�x;

which is continuous and has infimum 0, which it does not attain, on the noncompact interval

.0;1/.

The next theorem shows that if f is continuous on a finite closed interval Œa; b�, then f

assumes every value between f .a/ and f .b/ as x varies from a to b (Figure 2.2.5, page 64).

Theorem 2.2.10 (Intermediate Value Theorem) Suppose that f is con-

tinuous on Œa; b�; f .a/ ¤ f .b/; and � is between f .a/ and f .b/: Then f .c/ D � for

some c in .a; b/:
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a bx
x

y

y = f (x)

y = µ

Figure 2.2.5

Proof Suppose that f .a/ < � < f .b/. The set

S D
˚
x
ˇ̌
a � x � b and f .x/ � �

	

is bounded and nonempty. Let c D supS . We will show that f .c/ D �. If f .c/ > �,

then c > a and, since f is continuous at c, there is an � > 0 such that f .x/ > � if

c � � < x � c (Exercise 15). Therefore, c � � is an upper bound for S , which contradicts

the definition of c as the supremum of S . If f .c/ < �, then c < b and there is an � > 0

such that f .x/ < � for c � x < c C �, so c is not an upper bound for S . This is also a

contradiction. Therefore, f .c/ D �.

The proof for the case where f .b/ < � < f .a/ can be obtained by applying this result

to �f .

Uniform Continuity

Theorem 2.2.2 and Definition 2.2.3 imply that a function f is continuous on a subset S

of its domain if for each � > 0 and each x0 in S , there is a ı > 0, which may depend upon

x0 as well as �, such that

jf .x/ � f .x0/j < � if jx � x0j < ı and x 2 Df :

The next definition introduces another kind of continuity on a set S .

Definition 2.2.11 A function f is uniformly continuous on a subset S of its domain

if, for every � > 0, there is a ı > 0 such that

jf .x/ � f .x0/j < � whenever jx � x0j < ı and x; x0 2 S:

We emphasize that in this definition ı depends only on � and S and not on the particular

choice of x and x0, provided that they are both in S .

Example 2.2.13 The function

f .x/ D 2x
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is uniformly continuous on .�1;1/, since

jf .x/ � f .x0/j D 2jx � x0j < � if jx � x0j < �=2:

Example 2.2.14 If 0 < r <1, then the function

g.x/ D x2

is uniformly continuous on Œ�r; r �. To see this, note that

jg.x/ � g.x0/ D jx2 � .x0/2j D jx � x0j jxC x0j � 2r jx � x0j;

so

jg.x/ � g.x0/j < � if jx � x0j < ı D �

2r
and � r � x; x0 � r:

Often a concept is clarified by considering its negation: a function f is not uniformly

continuous on S if there is an �0 > 0 such that if ı is any positive number, there are points

x and x0 in S such that

jx � x0j < ı but jf .x/ � f .x0/j � �0:

Example 2.2.15 The function g.x/ D x2 is uniformly continuous on Œ�r; r � for any

finite r (Example 2.2.14), but not on .�1;1/. To see this, we will show that if ı > 0

there are real numbers x and x0 such that

jx � x0j D ı=2 and jg.x/ � g.x0/j � 1:

To this end, we write

jg.x/ � g.x0/j D jx2 � .x0/2j D jx � x0j jx C x0j:

If jx � x0j D ı=2 and x; x0 > 1=ı, then

jx � x0j jx C x0j > ı

2

�
1

ı
C 1

ı

�
D 1:

Example 2.2.16 The function

f .x/ D cos
1

x

is continuous on .0; 1� (Exercise 23(i)). However, f is not uniformly continuous on .0; 1�,

since ˇ̌
ˇ̌f
�
1

n�

�
� f

�
1

.nC 1/�

�ˇ̌
ˇ̌ D 2; n D 1; 2; : : : :

Examples 2.2.15 and 2.2.16 show that a function may be continuous but not uniformly

continuous on an interval. The next theorem shows that this cannot happen if the interval

is closed and bounded, and therefore compact.
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Theorem 2.2.12 If f is continuous on a closed and bounded interval Œa; b�; then f

is uniformly continuous on Œa; b�:

Proof Suppose that � > 0. Since f is continuous on Œa; b�, for each t in Œa; b� there is

a positive number ıt such that

jf .x/ � f .t/j < �

2
if jx � t j < 2ıt and x 2 Œa; b�: (9)

If It D .t � ıt ; t C ıt /, the collection

H D
˚
It

ˇ̌
t 2 Œa; b�

	

is an open covering of Œa; b�. Since Œa; b� is compact, the Heine–Borel theorem implies that

there are finitely many points t1, t2, . . . , tn in Œa; b� such that It1 , It2 , . . . , Itn cover Œa; b�.

Now define

ı D minfıt1 ; ıt2; : : : ; ıtng: (10)

We will show that if

jx � x0j < ı and x; x0 2 Œa; b�; (11)

then jf .x/� f .x0/j < �.
From the triangle inequality,

jf .x/� f .x0/j D j .f .x/ � f .tr //C .f .tr / � f .x0// j
� jf .x/ � f .tr/j C jf .tr/ � f .x0/j: (12)

Since It1 , It2 , . . . , Itn cover Œa; b�, xmust be in one of these intervals. Suppose that x 2 Itr ;

that is,

jx � tr j < ıtr : (13)

From (9) with t D tr ,

jf .x/ � f .tr /j <
�

2
: (14)

From (11), (13), and the triangle inquality,

jx0 � tr j D j.x0 � x/C .x � tr/j � jx0 � xj C jx � tr j < ı C ıtr � 2ıtr :

Therefore, (9) with t D tr and x replaced by x0 implies that

jf .x0/� f .tr/j <
�

2
:

This, (12), and (14) imply that jf .x/ � f .x0/j < �.
This proof again shows the utility of the Heine–Borel theorem, which allowed us to

define ı in (10) as the smallest of a finite set of positive numbers, so that ı is sure to be

positive. (An infinite set of positive numbers may fail to have a smallest positive member;

for example, consider the open interval .0; 1/.)

Corollary 2.2.13 If f is continuous on a set T; then f is uniformly continuous on

any finite closed interval contained in T:
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Applied to Example 2.2.16, Corollary 2.2.13 implies that the function g.x/ D cos 1=x

is uniformly continuous on Œ�; 1� if 0 < � < 1.

More About Monotonic Functions

Theorem 2.1.9 implies that if f is monotonic on an interval I , then f is either continuous

or has a jump discontinuity at each x0 in I . This and Theorem 2.2.10 provide the key to

the proof of the following theorem.

Theorem 2.2.14 If f is monotonic and nonconstant on Œa; b�; then f is continuous on

Œa; b� if and only if its rangeRf D
˚
f .x/

ˇ̌
x 2 Œa; b�

	
is the closed interval with endpoints

f .a/ and f .b/:

Proof We assume that f is nondecreasing, and leave the case where f is nonincreasing

to you (Exercise 34). Theorem 2.1.9(a) implies that the set eRf D
˚
f .x/

ˇ̌
x 2 .a; b/

	
is a

subset of the open interval .f .aC/; f .b�//. Therefore,

Rf D ff .a/g [ eRf [ ff .b/g � ff .a/g [ .f .aC/; f .b�// [ ff .b/g: (15)

Now suppose that f is continuous on Œa; b�. Then f .a/ D f .aC/, f .b�/ D f .b/, so (15)

implies that Rf � Œf .a/; f .b/�. If f .a/ < � < f .b/, then Theorem 2.2.10 implies that

� D f .x/ for some x in .a; b/. Hence, Rf D Œf .a/; f .b/�.
For the converse, suppose that Rf D Œf .a/; f .b/�. Since f .a/ � f .aC/ and f .b�/ �

f .b/, (15) implies that f .a/ D f .aC/ and f .b�/ D f .b/. We know from Theo-

rem 2.1.9(c) that if f is nondecreasing and a < x0 < b, then

f .x0�/ � f .x0/ � f .x0C/:

If either of these inequalities is strict, Rf cannot be an interval. Since this contradicts our

assumption, f .x0�/ D f .x0/ D f .x0C/. Therefore, f is continuous at x0 (Exercise 2).

We can now conclude that f is continuous on Œa; b�.

Theorem 2.2.14 implies the following theorem.

Theorem 2.2.15 Suppose that f is increasing and continuous on Œa; b�; and let f .a/ D
c and f .b/ D d: Then there is a unique function g defined on Œc; d � such that

g.f .x// D x; a � x � b; (16)

and

f .g.y// D y; c � y � d: (17)

Moreover; g is continuous and increasing on Œc; d �:

Proof We first show that there is a function g satisfying (16) and (17). Since f is

continuous, Theorem 2.2.14 implies that for each y0 in Œc; d � there is an x0 in Œa; b� such

that

f .x0/ D y0; (18)
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and, since f is increasing, there is only one such x0. Define

g.y0/ D x0: (19)

The definition of x0 is illustrated in Figure 2.2.6: with Œc; d � drawn on the y-axis, find the

intersection of the line y D y0 with the curve y D f .x/ and drop a vertical from the

intersection to the x-axis to find x0.

y

d

c

a b
x

y = f (x)

x
0
 

y
0
 

Figure 2.2.6

Substituting (19) into (18) yields

f .g.y0// D y0;

and substituting (18) into (19) yields

g.f .x0// D x0:

Dropping the subscripts in these two equations yields (16) and (17).

The uniqueness of g follows from our assumption that f is increasing, and therefore

only one value of x0 can satisfy (18) for each y0.

To see that g is increasing, suppose that y1 < y2 and let x1 and x2 be the points in Œa; b�

such that f .x1/ D y1 and f .x2/ D y2. Since f is increasing, x1 < x2. Therefore,

g.y1/ D x1 < x2 D g.y2/;

so g is increasing. Since Rg D
˚
g.y/

ˇ̌
y 2 Œc; d �

	
is the interval Œg.c/; g.d/� D Œa; b�,

Theorem 2.2.14 with f and Œa; b� replaced by g and Œc; d � implies that g is continuous on

Œc; d �.

The function g of Theorem 2.2.15 is the inverse of f , denoted by f �1. Since (16) and

(17) are symmetric in f and g, we can also regard f as the inverse of g, and denote it by

g�1.



Section 2.2 Continuity 69

Example 2.2.17 If

f .x/ D x2; 0 � x � R;
then

f �1.y/ D g.y/ D py; 0 � y � R2:

Example 2.2.18 If

f .x/ D 2x C 4; 0 � x � 2;
then

f �1.y/ D g.y/ D y � 4
2

; 4 � y � 8:


